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Color effects in a near-threshold Schmitt trigger
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A symmetric Schmitt trigger pumped by both a colored noise and a periodic signal is investigated in the
near-threshold regime, where the amplitude of the periodic signal is set slightly above the trigger threshold.
The trigger performances are shown, both theoretically and numerically, to be extremely sensitive to increasing
the noise correlation time. Noise-induced resonances are analyzed in some detail.@S1063-651X~98!07612-0#

PACS number~s!: 05.40.1j, 85.30.De
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I. INTRODUCTION

A symmetric Schmitt trigger~ST! is a well-known elec-
tronic device@1# characterized by a two-state output and
hysteretic loop~Fig. 1!. The trigger output rests in state—a
long as the input voltageV(t) is smaller than a threshol
valueV0 . As V(t)5V0 the trigger switches~almost! instan-
taneously into the1 state and sits there as long asV(t).
2V0 . Typically, the ST input is made up of two compo
nents, whose amplitudes greatly depend on the experime
circumstances, namely:~i! a noisy signal with zero mean an
finite correlation time;~ii ! one or more embedded period
signals with arbitrary wave forms. In the following we co
sider input signalsx(t) of the form

x~ t !5j~ t !1 f ~ t !, ~1.1!

wheref (t) is a modulation with periodTV52p/V andj(t)
is a Gaussian stationary noise with average^j(t)&50 and
autocorrelation function

^j~ t !j~0!&5s2e2utu/t. ~1.2!

Here, thej(t) standard deviations is termed noise intensity
and the quantityD5s2t, the noise strength. The most com
mon choice for the periodic functionf (t) is the sinusoidal
wave form

f ~ t !5A0cos~Vt1f!, ~1.3!

wheref is any initial phase. A symmetric square wave for
with amplitudeA0 and periodTV provides an even simple
example of the modulation signalf (t). The amplitudeA0 is
to be tuned with respect to thefixed trigger thresholds6b
~with b>0). With regard to the relevant time scales, w
assumeV to be constant, while the noise correlation timet
may be varied at one’s convenience over the whole ra
(0,̀ ). The ST outputy(t) is a symmetric dichotomic signa
with values6ym , chosen arbitrarily. Of course, the mod
lation f (t) in the input signal~1.1! drives a periodic compo
nent ^y(t)& in the output with the same periodTV .
PRE 581063-651X/98/58~6!/7079~6!/$15.00
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We discriminate between two operating ST configu
tions:~a! ThesubthresholdregimeA0,b. Under such a con-
dition stochastic resonance~SR! is clearly observable@2#;
the amplitudeȳ(s) of the output harmonic component wit
angular frequencyV shoots up with increasing noise inten
sity s until it reaches a maximum ats5sSR and then dies
away for largers values@3–5#. Stochastic resonance in a S
is by now a well-established phenomenon@6#. ~b! The su-
prathresholdregimeA0.b. In this configuration the trigger
switches are tightly driven by the input modulationf (t);
random failure events may occur due to the noise input co
ponentj(t). A similar occurrence was predicted recently f
a wide class of continuous bistable systems; its evidenc

FIG. 1. ~a! Circuit diagram of the ST. The thresholdb is deter-
mined by the ratioR1 /R2 ; ~b! ST characteristic curve in the nota
tion of Eq. ~1.1!.
7079 © 1998 The American Physical Society
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7080 PRE 58MARCHESONI, APOSTOLICO, GAMMAITONI, AND SANTUCCI
maximum for a certain value of the noise strength and
term resonant trappingwas coined@7#. A closely related
mechanism has been detected in the transient respon
certain metastable devices, as well, and goes under the n
of noise-enhanced stability@8#. Finally, we recall that the ST
is just one particular~though very popular! case of threshold
device@9#; therefore, most of the results presented here
of wide applicability to the design and testing of switch d
vices.

II. THE SUBTHRESHOLD REGIME

Assuming that the switching time is negligible compar
to all other circuit time scales, which is often the case,
symmetric ST can be safely regarded as abistable threshold
device. In the limit ofweakforcing A0!b the switch statis-
tics is governed by one characteristic timeT0(b) that, as
prescribed by the linear response theory, is independen
the forcing amplitudeA0 . At low noise a good choice fo
T0(b) is represented by the mean first-passage time~MFPT!
for j(t) to diffuse from, say, the lower2b to the upper
threshold1b. Indeed, under the additional condition that t
trigger has switched state atj52b, this MFPT reproduces
well the mean residence time of the ST in the2 state. Of
course, changing6 with 7 does not affect our estimates o
T0(b). Simple algebraic manipulations@10,11# yield

T0~b!52AptE
0

b̄
ey2

dy.tA2p~s/b!eb2/2s2
, ~2.1!

with b̄5b/A2s2. The approximate equality holds in th
weak noise limit b̄@1 @6#. The opposite limit leads to
T0(b);1/s, but threshold crossings and trigger switches
not in as close coincidence as at low noise; hence the M
from 2b to 1b and the switch time may differ@12#.

An alternate estimate of the switch timeT0(b) can be
obtained as follows. We first imagine recording the input a
output signal at timet0 ; for instance,j(t0)5j0 and y(t0)
52ym . Then we computeT0(b,j0), the MFPT forj(t) to
diffuse from the starting pointj0 up to the threshold1b.
Note that here no trigger switch is assumed att0 @12#. Re-
peating this procedure amounts to an additional averag
T0(b,j0) with respect to j0 in the 2 state interval
(2`,b). The outcome of such a calculation is a switch tim

T0~b!5
tAp

11F~ b̄!
E

2`

b̄
ex2

@11F~x!#2dx, ~2.2!

with F(x)5(2/Ap)*0
xe2z2

dz, which coincides with the pre

diction of Eq. ~2.1! for b̄@1 and approachesT0(b)5t ln2
for b̄!1. @For details see Sec. III A.#

At low forcing frequencies SR occurs experimentally f
small to intermediate values of the noise intensity@2#. Under
such restrictions the amplitudeȳ(s) of the fundamental pe
riodic component of the ST output can easily be compute
the two-state model approximation of Ref.@4#. In the present
case, the weak periodic forcing~1.3! can be viewed as just
time modulation of the thresholds, namely6b→b6(t)[
6b7A0cos(Vt1f). On substituting6b with b6(t) in Eq.
~2.1!, we recover the same type of time modulated ra
e

of
me

re
-

e

of

e
T

d

of

,

in

s,

which are postulated in Ref.@4# ~see the Appendix!. A
straightforward calculation for the asymptotic output au
correlation function ^y(t)y(t8)&as5^y2(s)&cos@V(t2t8)#
yields

^y2~s!&5~1/2!ȳ2~s!5
ym

2

2 S A0b

s2 D 2 m1
2~b!

V21m0
2~b!

, ~2.3!

where m1(b)5]m0(b̄)/]b̄2 and m052/T0(b). We remark
that Eq.~2.3!, as shown in the more general context of t
theory of susceptibility, applies to the~linear! response of
any low-noise symmetric bistable system@13#.

The numerical simulation results for a subthreshold
are displayed in Fig. 2. The simulation outcome and the tw
state model predictions could not be reconciled any bet

FIG. 2. ~a! Subthreshold regime:^y2(s)& ~in units ofym
2 ) versus

s/b for different values oft/TV . The input-output parameters an
s are expressed in dimensionless units, i.e.,A0510 andb5200.
The approximate curve~2.3! is drawn for the smallestVt value
with T0(b) given in Eq.~2.2! ~dotted line!. Inset: decay of̂y2(s)&
for s@b and the strong noise limit of Eq.~3.13! for a sinusoidal
modulation~dashed line!. The strong noise limits@b is discussed
at the end of Sec. III A.~b! The time constantT0(b) versuss/b in
the absence of periodic forcing. The simulation outcome for t
values of the integration time stepdt is compared with the predic
tions of Eqs.~2.1! ~dotted line! and ~2.2! ~solid line!.
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PRE 58 7081COLOR EFFECTS IN A NEAR-THRESHOLD SCHMITT TRIGGER
not even at smaller forcing amplitudes; note that in Fig. 2~a!
we setA0 /b50.05, consistently with the linear response r
quirementA0 /b!(s/b)2. In Fig. 2~b! the numerical results
for T0(b) are contrasted with the small noise approximati
~2.1! and our prediction~2.2!.

III. THE SUPRATHRESHOLD REGIME

In this configuration the forcing amplitudeA0 is taken to
be larger than the thresholdb, so that the switching dynamic
is driven by the forcing signal itself. This is certainly true
low noise intensities, i.e., fors!(A02b). On increasings
it might happen that, whenf (t) crosses the upper~lower!
threshold, the noise signalj(t) is smaller than2(A02b)
@larger than (A02b)#. In such a case the switch event ge
frustrated, unlessj(t) recrosses the boundary2(A02b) @or
(A02b)# prior to the subsequent sign reversal off (t). This
mechanism, illustrated in Fig. 3 for the simple case of
squarewave with amplitudeA0 and periodTV , describes a
noise-induced failure in the temporal sequence of the
switches.

A similar failure mechanism was observed first in a d
namical system, namely, a quartic double-well poten
driven by a forcing term with an amplitude larger than
dynamical bistability threshold@7#: There, a frustrated switch
is attributable to the fact that the finite escape time out of
unstable well increases with noise at low intensities and
maximum for an optimal value ofs, hence the termreso-
nant trapping. A ST is a threshold device and provides n
proper trapping condition by itself~no potential well is in-
volved!; however, the failure mechanism predicted abo
may be viewed as the natural counterpart of resonant t
ping in a continuous bistable system, which takes place
long noise correlation times~strong color limit @11#!. To
investigate such a mechanism we consider the following t
cases here:

A. Square-wave signal

This is the case sketched in Fig. 3. The condition fo
failure eventcan be stated as follows.

FIG. 3. Input-output scheme~solid and dashed lines, respec
tively! for a suprathreshold ST driven by a square wave with a
plitude A05201 and frequencynV5V/2p5100 Hz. Thick dots
denote a switch event; empty dots denote a failure.
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~a! At the time t50, when the forcing signal change
sign, say, from2A0 to A0 , we require thatj(01),2(A0
2b). This condition occurs with probability

P@j,2~A02b!#5E
2`

2~A02b!

p~j!dj

5~1/2!P@ uju.~A02b!#. ~3.1!

The noisej(t) is not allowed to recross the bounda
2(A02b) for a whole half forcing period, i.e., fort
<TV/2, lest a switch event occurs anyway, though with tim
delay. The failure probability decays exponentially withTV ,
the relevant time constantT1(b) being the average recross
ing time fromj(0), with j(0),2(A02b) to 2(A02b).

Now we calculate the recrossing time constantT1(b) in a
symmetric ST. Let us assume that att50 the noisej(t)
satisfies condition~a!, that is, j(0)[j0,2(A02b). The
MFPT for j(t) to diffuse fromj0 up to the absorbing bound
ary 2(A02b) ~with j52`, a reflecting barrier! is @10#

T1~b,j0!5
t2

D E
j0

2~A02b! dy

p~y!
E

2`

y

p~x!dx. ~3.2!

On introducing the definition of error functionF(x)
5(2/Ap)*0

xe2z2
dz, we obtain

T1~b,j0!5tApE
j̄0

2~Ā02b̄!
ex2

@11F~x!#dx, ~3.3!

with j̄05j0 /A2s2 and Ā05A0 /A2s2. Finally, we take the
average ofT1(b,j0) over j0 in the allowed range„2`,
2(A02b)‡, i.e.,

T1~b!5E
2`

2~A02b!

p~j0!T12~b,j0!dj0/E
2`

2~A02b!

p~j0!dj0 .

~3.4!

The double integral of Eq.~3.4! can be approximated ana
lytically in two limits: for Ā02b̄@1 ~small noise!,

T1~b!5t@s/~A02b!#2, ~3.5!

and for Ā02b̄!1 ~strong noise!,

T1~b!5t@c12c2~A02b!/s#, ~3.6!

with c15Ap*0
`ex2

@12F(x)#2dx5 ln 2 and c25Ap/2
2 ln 2/Ap.

Combining Eqs.~3.1! and ~3.2! gives the probability that
a failure takes place, namely

~1/2!P@ uju.~A02b!#exp@2~1/2!TV /T1~b!#. ~3.7!

The probability~3.7! vanishes fors→0 and jumps to a hori-
zontal asymptote (1/2)exp(2TV/2t) in the neighborhood of
s;(A02b). Most importantly, no resonant behavior is pr
dicted.

On the other hand, the trigger input-outputsynchroniza-
tion requires that a second condition hold true:

~b! At time t50 when f (t) flips sign, say, from2A0 to
A0 , a trigger switch takes place only under the addition

-
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restriction j(02),(A01b), that is, with probability
P@2(A02b),j(0),(A01b)#. As a matter of fact, we
must exclude situations where in the following half forcin
period j(t) takes on values more negative than2(A01b),
lest a spurious~noise-induced! switch occurs opposite in
phase tof (t). The time constant of such a mechanism co
cides with the MFPT forj(t) to diffuse fromj0 in the in-
terval †2(A02b),1`… down to2(A01b), namely,

T2~b,j0!5
t2

D E
2~A01b!

j0 dy

p~y!
E

y

`

p~x!dx. ~3.8!

Following the procedure@~3.2!–~3.4!# developed for calcu-
lating T1(b), we take the average ofT2(b,j0) over the start-
ing point j05j(0) and identify two important limits,
namely,

T2~b!.tA2pS s

A01bDexpF1

2S A01b

s D 2G ~s!A01b!,

~3.9!

T2~b!.t@c11c2A0 /s1c3b/s# ~s@A01b!,
~3.10!

with c35Ap/21 ln2/Ap.
In the strong color limitVt@1, the amplitudeȳ(s) of the

output periodic component with angular frequencyV can be
computed explicitly within the framework of the two-sta
model@4#. At variance with the subthreshold case of Sec.
the transition rates between the6 states are conditioned b
the trigger state at the time when the external modula
f (t) reverses its sign. For instance, letf (t) switch from
2A0 to A0 at time t50. If y(0)52ym , then T1(b) coin-
cides with the reciprocal of the transition rate from the2 to
the 1 state; analogously,T2(b) may be taken as the invers
transition rate from the1 to the 2 state. Note that forVt
@1 the crossing mechanisms in opposite directions may
taken as statistically unrelated. A simple calculation~see the
Appendix! yields the asymptotic output autocorrelation fun
tion ^y(t)y(t8)&as5^y2(s)&cos@V(t2t8)#, with

^y2~s!&5~1/2!ȳ2~s!5
1

2
S 4

p
ymD 2 T1

212T2
21

A~T1
211T2

21!21V2
.

~3.11!

The factor 4ym /p is the Fourier coefficient of the fundamen
tal harmonic component of a periodic square wave with a
plitude ym .

In the near-thresholdregime A0→b1, Eq. ~3.11! pre-
dicts that the curveŝy2(s)& versuss for large noise corre-
lation times drop sharply ats;(A02b) and s;(A01b)
and flatten out in between, thus forming a plateau.
checked that the quantitative agreement with the numer
simulation displayed in Fig. 4 is quite close. In the plate
region (A02b)!s!(A01b),

^y2~s!&5
1

2
S 4

p
ymD 2 1

A11~VT1!2
, ~3.12!
-

,

n

e

-

e
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with T1(b) approximated by Eq.~3.6!. The first drop ofȳ(s)
at arounds;(A02b) is due toT1(b) leveling off to its
asymptoteT1(b)5c1t @see Eqs.~3.6! and~3.7!#. The plateau
dependence on the dimensionless productVt is remarkable:

^y2(s)&5(1/2)ȳ2(s) is inversly proportional toVt for
Vt@1. This implies that very few synchronized switch
occur in a ST driven by a strongly colored noise withs
@(A02b). Analogsimulation confirmed this picture of th
suprathreshold ST response. In particular, theVt depen-
dence of^y2(s)& in the plateau region, Eq.~3.12!, proved
tenable over three decades, i.e., for 1<Vt<103. This result
is rather surprising when compared with the more conv
tional SR prediction~2.3! for the subthreshold regime.

The second drop ofȳ(s) at arounds;(A01b) can be
explained by noticing thatT2(b) approachesT1(b) for s
@(A01b) @see Eqs.~3.6! and ~3.10!# and that^y2(s)& is
proportional to the differenceT2(b)2T1(b) @see Eq.~3.11!#.
However, the resulting decay laŵy2(s)&;1/s is at vari-
ance with the outcome of our simulations~Figs. 4 and 5!,
where^y2(s)& falls off apparently like 1/s2. Such a discrep-
ancy is amenable to the fact that the two-state model fails
exceedingly large noise intensitiess!(A01b) ~see the Ap-
pendix!. As explained in item~b!, the instantaneous switc
probability from the2 state to the1 state is given by
Ps(s)[P@2(A02b),j,(A01b)#. For s@(A01b) the
probabilityPs(s) may be approximated toA2/p(A0 /s). On
the other hand, at large noise intensities the trigger switc
are no longer controlled by the noise correlation time—n
that T1(b);T2(b) are vanishingly small—whenceȳ(s)
5(4ym /p)Ps and

^y2~s!&5
1

2S 4

p
ymD 2

Ps
2~s!;

1

pS 4

p
ymD 2S A0

b D 2S b

s D 2

.

~3.13!

The strong noise limit~3.13! of the curve^y2(s)& is drawn
in both Figs. 4 and 5; since no appreciable dependence

FIG. 4. Suprathreshold regime:^y2(s)& ~in units of ym
2 ) versus

s/b for a square-wave signalf (t) for several values oft/TV . The
other parameter values,A05201, b5200, ands are expressed in
dimensionless units. Theoretical predictions: the intermediate n
plateau of Eq.~3.12! ~dotted lines!; the strong noise limit of Eq.
~3.13! ~dashed line!.
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the input parameterst, V and the modulation wave form
was detected, one can conclude that such a law is unive
Thes@(A01b) limit for the subthreshold setup of the ST
shown in the inset of Fig. 2~a!.

On passing we remark that a similar argument would le
to a simple estimate for̂y2(s)& in the ‘‘white noise’’ limit
Vt→0, namely

^y2~s!&5
1

2
S 4

p
ymD 2

P2~ uju>A0!5
1

2
S 4

p
ymD 2

FS A0

A2s2D ,

~3.14!

which is valid throughout thes domain.

B. Sinusoidal signal

When the ST is pumped by the suprathreshold sig
~1.3!, the relevant curveŝy2(s)& versuss show a shallow
minimum instead of the plateau described in Sec. III A. T
is clearly illustrated by the numerical simulation of Fig.
where the parameter valuesA0 , b, t andV are the same a
in Fig. 4, the only difference being thef (t) wave form. In
Fig. 6 curves from Figs. 4 and 5 are displayed for the sak
comparison. The local maximum of̂y2(s)& at s;(A0
1b) bears a certain resemblance to the resonant trap
phenomenon introduced in Ref.@7#; here, however, the reen
trant input-output synchronization is sensitive to the conti
ous wave form of the modulationf (t). Indeed, the overal
failure mechanism of Sec. III A could be extended to t
present case, though at the price of rather involved algeb
manipulations. It is no surprise that with the same choice
parameter values,̂y2(s)& for a sinusoidal modulationf (t)
is smaller than for the relevant square wave drive: the co
sponding failure probability is larger than our estimate~3.7!
because the failure condition~a! must hold now for the time
interval (2/V)arcos(b/A0), much shorter thanTV/2.

The reentrant synchronization mechanism can be qua
tively explained as follows. Fors!(A02b) a trigger switch
occurs only afterf (t) has crossed the levels6b. On raising

FIG. 5. Suprathreshold regime:^y2(s)& ~in units of ym
2 ) versus

s/b for the sinusoidal forcing. The values ofVt, A0 , andb are the
same as in Fig. 4. The asymptotic curve~3.13!, with the substitution
A0

2→A0
2/2, is drawn for comparison~dashed line!.
al.
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the noise intensitys, it may happen that a switch event ge
anticipated in time asf (t) approaches6b from subthreshold
values. Analogously, the failure condition~a! must hold a
little longer, since a recrossing could also occur at tim
whenu f (t)u is smaller than but close tob. In other words, the
time interval whenf (t) acts effectively as a suprathresho
signal increases with the noise intensity. This amounts
lowering the crossing levelb by a quantity of the order ofs.
As a consequence,^y2(s)& increases slowly withs within
the plateau region (A02b)!s!(A01b).

This argument can be worked out on more quantitat
grounds. The input signalx(t) of Eqs. ~1.1!–~1.3! satisfies
the stochastic differential equation

ẋ52x/t1h~ t !/t2~A0 /t!A11~Vt!2sin~Vt1f2w!,

~3.15!

where tanw5(Vt)21 andh(t) denotes a zero-mean-value
Gaussian noise with autocorrelation function^h(t)h(0)&
52s2td(t). At variance with the steady-state approxim
tion of Sec. II, in the strong color regimeVt@1 the inten-
sity of the noise and of the sinusoidal signal becomes co
parable for s/A0;AVt. Hence, the reentran
synchronization phenomenon in a near-threshold ST mus
restricted to noise intensities such thatAVt,s/A0,2, con-
sistently with the results of Fig. 6.

IV. CONCLUSIONS

We have investigated color effects in a symmetric Schm
trigger pumped by both a time-correlated noise and a p
odic signal. Color effects become conspicuous in the ne
threshold regime, namely when the amplitude of the perio
signal is set slightly above the trigger threshold. The am
tude of the periodic output component falls off with increa
ing the noise intensity. For long noise correlation times
trigger output drops first at a noise intensity of the order
the above-threshold component of the periodic signal a
eventually, drops to zero for a noise intensity larger than

FIG. 6. Suprathreshold regime:^y2(s)& ~in units of ym
2 ) versus

s/b for different values oft/TV ; the effects of sinusoidal~squares!
and square-wave signalsf (t) ~circles! with the same amplitude and
frequency are compared. All other parameter values are the sam
in Figs. 4 and 5.
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7084 PRE 58MARCHESONI, APOSTOLICO, GAMMAITONI, AND SANTUCCI
threshold itself. For short correlation times the low-no
output drop is inhibited. In the region in between the trigg
output may peak if driven by a continuous wave form~reso-
nant trapping! with forcing period of the order of the nois
correlation time. These properties of the trigger respo
amount to a noise-induced saturation effect, which wo
take place in a switch device at high forcing frequenci
even under thead hocassumption of instantaneous switche

APPENDIX

Our derivation of Eqs.~2.3! and ~3.12! follows directly
the standard treatment of the two-state model summarize
Ref. @4#. To help the reader rederive our results we n
make an explicit connection with McNamara-Wiesenfeld n
tation @4#.

(a) Subthreshold regime.Here we have

W6~ t !5T0
21@b6A0cos~Vt !#, ~A1!

whencea051/T0(b). @Note thata0 is half the switch rate
m0(b) of Sec. III A.# Due to the Markovian assumptionVt
!1 implicit in Eq. ~A1!, the ratesW6(t) depend on the
system configuration at timet alone~adiabatic or steady-stat
approximation!.
v.

S

cc
r

e
d
,
.

in

-

(b) Suprathreshold regime.As explained in Sec. III A, for
Vt@1 our estimates for the suprathreshold transition ra
W6(t) areconditionedby the trigger outputy(t) itself. Let
y(t0)52ym at t5t0 when f (t) switches from2A0 to A0 ;
then, in the notation of Ref.@4#,

W1~ tu@2ym ,t0# !5T2
21~b!, ~A2!

W2~ tu@2ym ,t0# !5T1
21~b!. ~A3!

The adiabatic assumption fails forVT1(b)@1 andVT2(b)
@1, i.e., for s@(A01b). The output autocorrelation func
tion ^y(t)y(0)& must be defined so as to account for t
non-Markovian nature of the problem. The appropriate d
nition in the present case is

^y~ t1!y~ t0!&5E dy0y0p~y0 ,t0!^y~ t1!u@y0 ,t0#&, ~A4!

where^y(t)u@y0 ,t0#& is the conditional mean ofy(t) given
that y(t0)5y0 for t0<t. In Eq. ~A4! p(y0 ,t0)5d@y0
2y(t0)# andy(t0) is a square-wave with amplitudeym and
period TV in phasewith f (t). Following Ref. @4# we now
take the limit t1 ,t0→` for t12t05t fixed. On averaging
over the initial phase of the forcing signalf (t), we finally
obtain Eq.~3.12!.
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